Sequence specific DNA binding of Ets-1 transcription factor: molecular dynamics study on the Ets domain--DNA complexes.

نویسندگان

  • Satoshi Obika
  • Swarnalatha Y Reddy
  • Thomas C Bruice
چکیده

Molecular dynamics (MD) simulations for Ets-1 ETS domain-DNA complexes were performed to investigate the mechanism of sequence-specific recognition of the GGAA DNA core by the ETS domain. Employing the crystal structure of the Ets-1 ETS domain-DNA complex as a starting structure we carried out MD simulations of: (i). the complex between Ets-1 ETS domain and a 14 base-pair DNA containing GGAA core sequence (ETS-GGAA); (ii). the complex between the ETS domain and a DNA having single base-pair mutation, GGAG sequence (ETS-GGAG); and (iii). the 14 base-pair DNA alone (GGAA). Comparative analyses of the MD structures of ETS-GGAA and ETS-GGAG reveal that the DNA bending angles and the ETS domain-DNA phosphate interactions are similar in these complexes. These results support that the GGAA core sequence is distinguished from the mutated GGAG sequence by a direct readout mechanism in the Ets-1 ETS domain-DNA complex. Further analyses of the direct contacts in the interface between the helix-3 region of Ets-1 and the major groove of the core DNA sequence clearly show that the highly conserved arginine residues, Arg391 and Arg394, play a critical role in binding to the GGAA core sequence. These arginine residues make bidentate contacts with the nucleobases of GG dinucleotides in GGAA core sequence. In ETS-GGAA, the hydroxyl group of Tyr395 is hydrogen bonded to N7 nitrogen of A(3) (the third adenosine in the GGAA core), while the hydroxyl group makes a contact with N4 nitrogen of C(4') (the complementary nucleotide of the fourth guanosine G(4) in the GGAG sequence) in the ETS-GGAG complex. We have found that this difference in behavior of Tyr395 results in the relatively large motion of helix-3 in the ETS-GGAG complex, causing the collapse of bidentate contacts between Arg391/Arg394 and the GG dinucleotides in the GGAG sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors

The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structu...

متن کامل

The highly conserved beta-hairpin of the paired DNA-binding domain is required for assembly of Pax-Ets ternary complexes.

Pax family transcription factors bind DNA through the paired domain. This domain, which is comprised of two helix-turn-helix motifs and a beta-hairpin structure, is a target of mutations in congenital disorders of mice and humans. Previously, we showed that Pax-5 (B-cell-specific activator protein) recruits proteins of the Ets proto-oncogene family to bind a composite DNA site that is essential...

متن کامل

A thermodynamic basis of DNA sequence selectivity by the ETS domain of murine PU.1.

The ETS domain of the transcription factor PU.1 tolerates a large number of DNA cognate variants that differ exclusively in the sequences flanking a critical central consensus, 5'-GGAA-3'. We investigated the thermodynamics of site selection by the DNA-binding domain by following the PU.1 ETS/DNA equilibrium with a large set of cognate variants under various temperature and salt conditions by f...

متن کامل

Inhibition of Ets-1 DNA binding and ternary complex formation between Ets-1, NF-kappaB, and DNA by a designed DNA-binding ligand.

Sequence-specific pyrrole-imidazole polyamides can be designed to interfere with transcription factor binding and to regulate gene expression, both in vitro and in living cells. Polyamides bound adjacent to the recognition sites for TBP, Ets-1, and LEF-1 in the human immunodeficiency virus, type 1 (HIV-1), long terminal repeat inhibited transcription in cell-free assays and viral replication in...

متن کامل

Autoinhibition of ETV6 (TEL) DNA binding: appended helices sterically block the ETS domain.

ETV6 (or TEL), a transcriptional repressor belonging to the ETS family, is frequently involved in chromosomal translocations linked with human cancers. It displays a DNA-binding mode distinct from other ETS proteins due to the presence of a self-associating PNT domain. In this study, we used NMR spectroscopy to dissect the structural and dynamic bases for the autoinhibition of ETV6 DNA binding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 331 2  شماره 

صفحات  -

تاریخ انتشار 2003